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SUMMARY 

The finite-difference equations which have previously been developed to solve the problem of laminar 
boundary layer flow about a rotating sphere in an axial stream are analysed according to the available 
numerical stability theories. This analysis is necessary to determine the restrictions on velocities and mesh 
sizes required to obtain a convergent numerical solution. Convergence can be achieved if both consistency 
and stability of the finite-difference equations are fulfilled. The analysis reported in the present paper shows 
that the developed finite-difference equations are consistent with their original partial differential equations. 
Also, the analysis proves that the developed finite-difference procedure is numerically stable for all mesh sizes 
as long as the downstream meridional velocity is non-negative, i.e. as long as no flow reversals occur within the 
domain of solution. 
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INTRODUCTION 

In approximating the derivatives of a mathematical model by numerical finite differences, there is 
an error introduced which is usually termed the truncation error. Moreover, when the numerical 
method is actually run on a digital computer, round-off errors are introduced. Round-off errors are 
caused by rounding of the results from individual arithmetic operations because only a finite 
number of digits can be retained, by the computer, after each operation. 

Having constructed a plausible finite-difference procedure, we must cEck whether it will be 
convergent or not. Convergence means that the numerical solution of a finite-difference procedure 
tends to the exact solution of the original partial differential equation(s) as the grid spacing tends 
to zero. 

There are two important concepts closely associated with the convergence of a particular finite- 
difference procedure, namely those of consistency and stability. Consistency means that the 
procedure may in fact approximate the solution of the partial differential equation(s) under study, 
and not the solution of some other differential equation(s). To obtain this requirement, the 
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truncation errors must tend to zero as the numerical mesh size tends to zero. The term stability is 
used in reference to the behaviour of the round-off errors or any other errors whether present in the 
initial conditions, or brought in via the boundary conditions, or arising from any sort of error in the 
calculations. It is said that a finite-difference scheme is numerically stable if such errors introduced 
at any stage of computation either decreases or remains constant during subsequent uninterrupted 
stepping ahead of the solution. According to a theorem due to Lax,’ for linear finite-difference 
equations, provided that consistency is satisfied, stability is both a necessary and sufficient 
condition for convergence. More details concerning consistency and stability and theories relating 
them with convergence may be found in Reference 2. 

In a recent publication, EI-Shaarawi et aL3 presented a simple non-iterative finite-difference 
scheme to solve the problem of steady laminar boundary layer flow about a rotating sphere in an 
axial stream. The main aims of the present paper are to check whether the finite-difference 
equations are consistent with their original differential equations and to make an analysis to 
determine the restrictions on velocities and mesh sizes required to obtain a convergent numerical 
solution. 

GOVERNING EQUATIONS AND THEIR FINITE 
DIFFERENCE REPRESENTATIONS 

Consider steady, rotationally symmetric, laminar flow of an incompressible Newtonian fluid with 
constant physical properties in the region outside a sphere which is rotating with a constant 
angular velocity SZ about a diameter parallel to the flow direction. Let x,y ,z  be orthogonal 
curvilinear co-ordinates, where x is measured along a meridional direction, y is along a circular 
cross-section of the sphere by a plane perpendicular to the axis of rotation, and z is in the spherical 
radial direction with its zero value located on the sphere surface. Under these previously mentioned 
assumptions and in the absence of body forces, the dimensionless boundary layer equations and 
boundary conditions for the problem at hand are 

au UdR ReaW W -+--+--+ Re-=0, ax RdX 2 dZ 1 + z  

au T a v 2 d R  Re au dU,* u-----++w-=u* ax Re2 R dX 2 az O d X  
av UVdR Re av a 2 V  u- + __- + - w- = ~ ax R d x  2 az az2’ 

for Z = 0 and X > 0: U = W= 0 and V = sin 8, 

a w  
az2 ’ +- 

(3) 

f o r X = O a n d Z > O : U =  V=O,and W = -  l+- [ (1 +lZ).1. J 
In the above equations X = 2x/(a.Re), Z = z/a, R = 2r/(a.Re), U = u/U,, W = wJU,, V = u/Ra, 

Re = 2a U,/v, Ta = 4R2a4/v2, U* = u*/U,, and 6* = 6/a,  where a is the radius of the sphere, U ,  is 
the free stream velocity, v is the kinematic viscosity of the fluid, u,u and w are the meridional, 
azimuthal and radial components of velocity, respectively, r is the radius of a circular cross-section 
of the sphere by a plane perpendicular to the axis of rotation, and the subscript 0 denotes ‘on 
the sphere surface’. 
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The finite-difference equations which have been used by EL-Shaarawi et al. are repeated here 
for completeness: 

ui+l,j+l + ui,j+l - ui+l,j- ui,j + ( u i + l , j + l  + Ui,j+l)Re 
2AXi+ 112 4(1 + Zi+ 112) cot (jA0) 

Re ui+l,j+l - U i - l , j + ~  = 3 sin (jA0)$Re cos ( j  A@ 
2 2AZ + wi,j- 

- 1  
1 

[ l  + (i - 1)AZI3 
w. = ',' 

Figure 1 shows the numerical grid, where the independent variables are computed at the 
intersections of the grid lines and (i,j) is a typical mesh point. Mesh points are numbered 
consecutively, the i is progressing in the radial direction with i = 1,2,3,. . . ,n + 1 from the sphere 
surface, and the j is progressing in the meridional direction with j = 1,2,3,. . . ,m + 1 from the 
stagnation point. At each meridional station j ,  the number of radial increments n should be chosen 
so that the uppermost point (i = n + 1) lies in essentially undisturbed fluid. In Figure 2 parts of the 
finite-difference domain are drawn to clarify how each differential equation has been transferred 
into its corresponding finite-difference form. In this Figure, the crossed points represent these grid 
points involved in the finite-difference representation of the equation under consideration and a 
ringed point is that point at which the derivatives have been calculated. 

As can be seen, the finite difference approximations are not perfectly symmetrical nor are they of 
the same form in all equations; this was done to ensure numerical stability, to enable the equations 
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Figure 1. Numerical grid 

h r i r n u t h a l  equation c o n t l n u l i y  equation M e r i d i o n a l  equa t 1 on 

Figure 2. Grid points involved in difference representations of the three differential equations 

to be uncoupled from each other and to be solved by the method summarized in the paper of El- 
Shaarawi et a1.j 

The truncation error due to the approximation of any of equations (1)-(3) by its corresponding 
finite-difference equation is proportional to (AX) and to (AZ)*. Such truncation errors vanish as 
the mesh sizes tend to zero, and hence, the finite-difference equations (5)-(7) are consistent 
representations of equations (1)-(3). 

STABILITY ANALYSIS 

The finite-difference equations (5)-(7) have been linearized by assuming that, where the product 
of two unknowns (with subscript j + 1) occurs, one of them is given approximately by its known 
value at the previous meridional step (with subscriptj). This means that, throughout a meridional 
step, the non-linear coefficients have been frozen locally at values ( U ,  V and W). For such a 
system, i.e. equations (5)-(7), one may apply linear stability theory as follows. 

According to von Neumann analysis (summarized by Carnahan et al.') the numerical stability 
of a finite-difference procedure can be examined by introducing small perturbations (denoted 
hereinafter by U', V' and W') into the finite-difference equations and checking whether or not 
such perturbations amplify as the computation proceeds in the marching direction. Therefore, 
the insertion of the new variables U + U', V +  I/' and W +  W' into equations (5)-(7) leads to the 
following three equations: 
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Equations (9)-(11) govern the behaviour of the small perturbations which represent the 
round-off or similar errors. According to von Neumann, a general term of a particular numerical 
error (i/e. a primed variable) at a point (X,Z) is a product of two functions; the first of these is 
an exponential function of X only, which represents the amplitude of the error at the particular 
point under consideration, and the second is an exponential function of Z only, containing all 
possible existing harmonics. A typical form of this general term at any station (say for example j )  
is f(X)eiqz, where i denotes the square root of - 1, q is any real number representing the 
frequency of any existing harmonic, andf(X) is an exponential function of X only, representing 
the amplitude of the error at that particular station. 

Now using such a typical form for all the perturbations, we have Ui,j =fl(X)eiqZ, Vi,j = f2(X)eiqZ 
and Wi,j = f3  (X)eiqZ. Substituting these sinusoidal representations of the perturbations 
into equations (9)-( 1 I), leads, after manipulation, to the following set of three simultaneous 
equations: 

in which 

C ,  = 1/[1 +4SsinZy+iSB], 

S = AX/[U(AZ)’], 

y = qAZ/2, 
B = WAZ Re sin (qAZ)/2, 

C, = C , C , V A X T U ~ ~ ~ ~ ~ + ~ / [ R ~ ( ~  +Zi)U],  

C ,  = [ 1 - Q - 2S sin2 y + (1/4) iSB]/[ 1 + Q + 2 s  sin’ y - (1/4)iSB], 

Q =  Recot~j+l ,2/[4AX(1 +Zi) l ,  
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The foregoing set of equations (12) can be written in the following matrix-vector notations: 

F(X + AX) = GF(X), 

where F(X + AX) and F(X) are the column vectors whose components are the amplitudes of the 
individual error components corresponding to the various dependent variables at (X + AX) and X, 
respectively, and G is a complex matrix of dimensions 3 x 3, known as the amplification matrix. 

For numerical stability, each eigenvalue of the amplification matrix G must not exceed unity in 
modulus for all values of the frequency q. The eigenvalues L of the amplification matrix G can be 
obtained by solving the equation 

I G - LI* I = 0,  

where I* is the identity matrix and I G - LI* I is the determinant which results from subtraction of 
the matrix LI* from the amplification matrix G. The solution of this equation gives 

L , = C l ,  L ,=C,  and L,=O, 

where L,, L, and L, are the three eigenvalues of G. 
Denoting the moduli of these eigenvalues by L,, L2 and L;, respectively, then 

El = 1/J[(1+ 4s sin’y)’ + S’B’], 

L; = 

L; = 0 4 

[( 1 - Q - 2 s  sin2 7)’ + S 2 B 2 ] /  [(l + Q + 2 s  sin’ y)’ + S2B2]  , 

In the above expressions it is to, be noted that the squared quantities are always positive, and 
hence each of the moduli L’, and L, will be always less than unity if the variable S is positive. 
However, S is positive if U is positive. Hence, the finite difference equations (5)-(7) are stable for all 
mesh sizes as long as the downstream meridional velocity U is positive, i.e. as long as no flow 
reversals occur within the domain of solution. 

CONCLUSIONS 

It has been proved that the finite-difference equations (5)-(7) are consistent with their original 
partial differential equations (1)-(3) and that they are also stable for all mesh sizes as long as the 
downstream meridional velocity component is non-negative. Thus, both the consistency and 
stability conditions have been fulfilled, on condition that no flow reversals occur within the domain 
of solution. Therefore, as long as the condition of absence of flow reversals is satisfied, the 
numerical solution of the finite difference equations (5)-(7) is convergent, i.e. it tends to the exact 
solution of the original governing partial differential equations (1)-(3) as the grid spacings tend to 
zero. 
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